Translation of the original instructions

DOLD

Function Diagram

Circuit Diagrams

MK 7854N. 82

MK 7854N.82/500

- According to IEC/EN 61812-1
- 8 time ranges from 0.05 s to 300 h selectable via rotational switches
- Impulse and break time separately adjustable
- Selectable start with impulse or break
- Voltage range AC/DC 12 ... 240 V
- Adjustment aid for quick setting of long time values
- Suitable for 2-wire proximity sensor control
- LED indicators for operation, contact position and time delay
- 2 changeover contacts
- Wire connection: Also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled, or $2 \times 2.5 \mathrm{~mm}^{2}$ solid DIN 46228-1/-2/-3/-4
- As option 1 changeover contact instantaneously programmable
- As option connection of 2 remote potentiometers
- As option with time interruption / time adding input
- As option with pluggable terminal blocks for easy exchange of devices
- With screw terminals
- Or with cage clamp terminals
- 22.5 mm width

Approvals and Markings

* See variants

Application

Time-dependent controllers

Indicators

Green LED:
Yellow LED "R/t":
-Flashing (short on, long off)
-Flashing (long on, short off)
On when voltage connected
Shows status of output relay and time delay:
Output relay not active; time delay t2 (break time)
Output relay active;
time delay t1 (pulse time)

Connection Terminals	Signal description
Terminal designation	$\mathrm{L} /+$
A1	$\mathrm{N} /-$
A2	Changeover contact
$15,16,18$	Changeover contact
25, 26, 28	Control Input (time interruption with time adding)
B1(+)	Control Input (programming $2^{\text {nd }}$ delayed C/O contact or instantaneous contact)
X1, X2	Input to connect two remote poten- tiometer for time setting t1 and t2
Z1, Z2, Z3	

Notes

Control of A1-A2 with proximity sensors

The input can be controlled by DC 3 wire or AC/DC 2 wire proximity sensors. For operating voltage $>24 \mathrm{~V}$ and usage of sensors without built-in short circuit protection a protection resistor on A1 is recommendend to reduce the inrush current. The dimension is as follows:
$\mathrm{R}_{\mathrm{v}} \approx$ operating voltage / max. switching current of sensor
The series resistor must not be selected higher than necessary. Max. values are:
Operating voltage: $\quad 48 \mathrm{~V} \quad 60 \mathrm{~V} \quad 110 \mathrm{~V} \quad 230 \mathrm{~V}$
Series resistor $R_{v} \max : \quad 270 \Omega \quad 390 \Omega \quad 680 \Omega \quad 1.8 \mathrm{k} \Omega$ (1 W)

Adjustment assistance

The flashing period of the yellow LED is $1 \mathrm{~s} \pm 4 \%$ and can be used to adjust the time. Especially on the lower end of scale and for long times it is suitable as the multiplication factors between the different time ranges are exact without tolerance.
Example:
The required time is 40 min . It has to be adjusted within the range 3 ... 300 min . The time check takes too long as several timing cycles would be necessary for a precise value.

For faster adjustment the setting is made to $0.03 \ldots 3 \mathrm{~min}$. On this range the potentiometer should be set to 0.4 min . ($=24 \mathrm{sec}$). With the right potentiometer setting the LED must show 24 flashing cycles. After that the time range is switched over to 3 ... 300 min and the setting is complete.

Time interruption / Time adding

With the model MK 7854N.82/500 the timing cycle can be interrupted by controlling input B1 (+) with control voltage. Removing the control signal will continue the timing cycle (time addition). When time interrupted the yellow LED stops to flash and goes to continuous light during pulse time (output relay active), or goes off during break time (output relay inactive)

Control input B1

The control input B1 (+) has to be supplied with voltage against A2. The control signal could be the same as the auxiliary/control voltage of A1 or any other voltage between 12 and 240 V AC or DC. Operating a parallel load between B1 and A2 is possible, which allows cost saving circuits.

Instantaneous contact

By external wire lings the output function fo the variant MK 7854N.82/500 can be altered from 2 delayed contacts to 1 delayed and 1 instantaneous contact. The instantaneous contact switches when the operating voltage is connected.
To terminals X1 and X2 no other voltage potentials must be connected, as the unit might be damaged.

Remote potentiometers

With the variant MK 7854N.82/500 both time settings can also be made via remote potentiometers of 10 kOhms:

- Terminals Z1-Z2: Potentiometer for pulse time (t1)
- Terminals Z2-Z3: Potentiometer for break time (t2)

When connecting a remote potentiometer, the corresponding potentiometer has to be set to min. If no remote potentiometers are required the terminals Z1-Z2 resp. Z2-Z3 have to be linked.
The wires to the remote potentiometers should be installed separately from the lines with mains voltage. If this is not possible, a screened cable is recommendet where the shield is connected to $\mathrm{Z2}$.
To terminals $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 no external voltage must be connected, as the unit might be damaged.

Setting

Technical Data

Time circuit

Time ranges:

Time setting t1, t2:

Recovery time:

At DC 24 V :
At DC 240 V :
At AC 230 V :
Repeat accuracy:
Voltage and
temperature influence:

Input

Nominal voltage \mathbf{U}_{N} :
Voltage range:
Frequency range (AC):
Nominal consumption
At AC 12 V :
At AC 24 V :
At AC 230 V :
At DC 12 V :
At DC 24 V :
At DC 230 V :
Release voltage (A1/A2)
AC 50 Hz :
DC:

AC 50 Hz :
DC:
Max. permitted residual
current with 2-wire proximity
sensor control (A1-A2)
Up to AC/DC 150 V:
Up to AC/DC 264 V:
Control current (B1)
MK 7854N.82/500:
Release voltage (B1/A2)
AC 50 Hz :
DC:

8 time ranges in one unit, settable via rotational switch
$0.05 \ldots 1$ s $0.3 \ldots 30 \mathrm{~min}$
0.06 ... 6 s 3 ... 300 min
$0.3 \quad . .30 \mathrm{~s} \quad 0.3 \ldots 30 \mathrm{~h}$
0.03 ... 3 min 3 ... 300 h

Continuous, 1:100 on relative scale
Approx. 15 ms
Approx. 50 ms
Approx. 80 ms
$\pm 0.5 \%$ of selected end
of scale value
$<1 \%$ with the complete
operating range

AC/DC $12 \ldots 240 \mathrm{~V}$
$0.8 \ldots 1.1 U_{N}$
45 ... 400 Hz

Approx.1.5 VA

Approx. 2 VA
Approx. 3 VA
Approx. 1 W
Approx. 1 W
Approx. 1 W
Delayed contact
Approx. 7.5 V
Approx. 7 V
Instantaneous contact
Approx. 3 V
Approx. 3.3 V

AC resp. DC 5 mA
AC resp. DC 3 mA

Approx. 1 mA, over complete
voltage range
Approx. 3.5 V
Approx. 3 V

Technical Data

Output

Contacts:
MK 7854N.82:
MK 7854N.82/500:
Without bridge $\mathrm{X} 1-\mathrm{X} 2$:
With bridge $\mathrm{X} 1-\mathrm{X} 2$:
Contact material:
Measured nominal voltage:
Thermal current I_{th} :
Switching capacity
To AC 15
NO contact:
NC contact:
To DC 13:
Electrical life
At AC 15 to 1 A, AC 230 V :
Permissible switching frequency:
Short circuit strength
Max. fuse rating:
Mechanical life:

2 changeover contacts
2 changeover contacts, one programmable as instantaneous contact 25-26-28 delayed changeover contact
21-22-24 instantaneous contact at
U_{N} on A1-A2
AgNi
AC 250 V
See quadratic total current limit curve (max. 4 A per contact)

3 A / AC 230 V IEC/EN 60947-5-1
1 A / AC 230 V IEC/EN 60947-5-1
1 A / DC 24 V
IEC/EN 60947-5-1
1.5×10^{5} switching cycles
36000 switching cycles / h
4 A gG / gL IEC/EN 60947-5-1
30×10^{6} switching cycles

General Data

Operating mode:
Temperature range
Operation:

Storage:

Relative air humidity:

Altitude:

Clearance and creepage

distances

Rated impulse voltage / pollution degree:
Input / Output:
Output / Output:
Overvoltage category:
Insulation test voltage,
type test:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
Between
wires for power supply:
Between wire and ground:
HF-wire guided:
Interference suppression:

Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance: Terminal designation:

Continuous operation
$-40 \ldots+60^{\circ} \mathrm{C}$
(higher temperature see
quadratic total current limit curve)
$-40 \ldots+70^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 2000 m

$4 \mathrm{kV} / 2$ (basis insulation)	IEC 60664-1
$4 \mathrm{kV} / 2$ (basis insulation)	IEC 60664-1
III	
$2.5 \mathrm{kV} ; 1 \mathrm{~min}$	
8 kV (air)	
$20 \mathrm{~V} / \mathrm{m}$	IEC/EN 61000-4-2
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61000-4-3
2 kV	IEC/EN 61000-4-3

2 kV IEC/EN 61000-4-5

4 kV

IEC/EN 61000-4-5
IEC/EN 61000-4-5
IEC/EN 61000-4-6

Limit value class A^{*})
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.

IP 40	IEC/EN 60529
IP 20	IEC/EN 60529

P 20 -IEC/EN 60529
Thermoplasic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz , IEC/EN 60068-2-6
20 / 060 / 04 IEC/EN 60068-1
EN 50005

Technical Data

Wire connection
Screw terminals (integrated):
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled or $2 \times 2.5 \mathrm{~mm}^{2}$ solid
Insulation of wires or sleeve length:

8 mm
Plug in with screw terminals
Max. cross section
for connection: $\quad 1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
Insulation of wires or sleeve length:
Plug in with cage
clamp terminals
Max. cross section for connection:
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
Min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing:
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M 3.5
box terminals with wire protection or cage clamp terminals
Fixing torque:
Mounting:
Weight:
Max. 0.8 Nm
DIN rail
150 g
IEC/EN 60715

Dimensions
Width x heigth x depth:
MK 7854N:
$22.5 \times 90 \times 97 \mathrm{~mm}$
MK 7854N PC:
$22.5 \times 111 \times 97 \mathrm{~mm}$
$22.5 \times 104 \times 97 \mathrm{~mm}$

UL-Data

Switching capacity:
Ambient temperature $60^{\circ} \mathrm{C}$: Pilot duty B300
5A 250Vac G.P.

Wire connection:

Screw terminals fixed:
Plug in screw:
Plug in cage clamp:
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol/Str Torque 0.8 Nm AWG 20-14 Sol Torque 0.8 Nm AWG 20-16 Str Torque 0.8 Nm AWG 20-12 Sol/Str

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type	
MK 7854N.82/61 AC/DC $12 \ldots 240 \mathrm{~V} 0.05 \mathrm{~s} \ldots 300 \mathrm{~h}$	
Article number:	0054053
- Output:	2 changeover contacts
- Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	AC/DC $12 \ldots 240 \mathrm{~V}$
- Time ranges:	$0.05 \mathrm{~s} \ldots 300 \mathrm{~h}$
- Width:	22.5 mm

Variant

MK 7854N.82/500/61:

- Connection facility for 2 remote potentiometers 10kOhms to adjust pulse and break time
- 2 changeover contacts, one programmable as instantaneous contact
- Additional control input B1 for time interruption / time addition

Ordering example for variant

Characteristics

Quadratic total current limit curve

Accessories

AD 3:

Degree of protection front side:

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp
(PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

External potentiometer $10 \mathrm{k} \Omega$
Article number: 0028962
The external potentiometer is used for remote setting of the time delay. The internal potentiometer of the timer must be set to min. time delay.

IP 40

standard dimension

Connection Examples

Control with parallel connected load

Connection with 2 different control voltages

