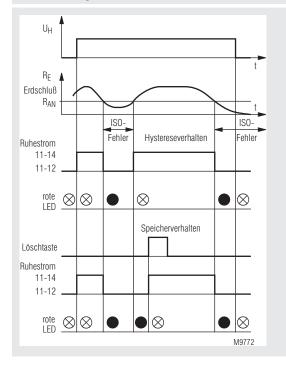
Monitoring Technique

VARIMETER IMD Insulation Monitor AN 5892

Translation of the original instructions



Product Description

The insulation monitor AN5892 of the series VARIMETER IMD monitors the ground resistance of isolated DC- and AC voltage systems (IT-systems) with nominal voltage up to DC 1500 V and AC 0 ... 1000 V.

The unit detects symmetrical as well as unsymmetrical faults. The separate auxiliary supply allows also monitoring when the system is without voltage. To indicate the actual ground resistance value the unit has an LED chain and an analogue output. When a fault is detected the relay switches and the red LED lights up.

Function Diagram

Your Adventages

- · Preventive fire and system protection
- Insulation monitoring of DC and AC-systems up to 1500 V and AC 1000 V nominal voltage
- No additional coupling device required
- Monitoring also with voltage-free mains

Features

- Insulation monitoring according to IEC/EN 61557-8
- Fixed response value R_{AN}
- · Internal reset button
- · External reset and test button can be connected
- · LED indicator
- 1 changeover contact
- · Programmable for manual reset or hysteresis function
- · Analogue output for insulating value
- External connection of indicating instrument possible
- · De-energized on trip
- · Energized on trip on request
- Width 100 mm

Approvals and Markings

Application

Monitoring of the resistance to earth in ungrounded DC- and AC systems.

Function

The device is supplied with auxiliary voltage via terminals A1/A2. After connecting the auxiliary supply a 10 s start up delay is active allowing the measuring circuit to start. After this, measurement of the insulation resistance in the measuring circuits begins.

Measuring circuit

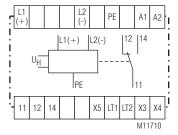
(Insulation measurement between terminals L1(+)/L2(-) and PE). Terminals L1(+) and L2(-) are connected to the mains to be monitored the terminal PE must be connected to the protective conductor system.

An active measuring voltage with alternating polarity is applied between L1(+)/L2(-) and PE to measure the insulation resistance.

The length of the positive and negative measuring phases has a fixed factory setting of 2 s (max. leakage capacitance of 1 μ F).

The LED-chain and the analogue output show the actual determined insulating resistance, and the output relays witch according to the respective response values set. If the response thresholds has been undercut the red LED " $\rm R_E < R_{\rm AN}$ " lights up.

Indicators


LED chain: The approx. value of actual rsistance to

ground (PE)

Red LED: On when resistance is below the

response value R_{AN}

Circuit Diagram

Connection Terminals

Terminal designation	Signal description
A1, A2	AC-auxiliay voltage U _H
L1(+), L2(-)	Connection for measuring circuit
PE	Connection for protective conductor
X5 (/LT1)	Control input (manual / auto reset) X5/LT1 bridged: manual reset X5/LT1 not bridged: auto reset
LT1, LT2	Connection option for external reset-button
X3, X4	Analogue output
11, 12, 14	Alarm signal relay (1 changeover contact)

Notes

Risk of electrocution! Danger to life or risk of serious injuries.

- Disconnect the system and device from the power supply and ensure they remain disconnected during electrical installation.
- The terminals of the control input X5, LT1, und LT2 have no galvanic separation to the measuring circuit L1(+) - L2(-) and are electrically connected together, therefore they have to be controlled by volt free contacts or bridge. These contacts ore bridges must provide a sufficient separation depending on the mains voltage on L1(+) - L2(-).
- No external potentials may be connected to control terminals X5, LT1, and LT2.
- The terminals of the control input X3 and X4 have no galvanic separation
 to the measuring circuit L1(+) L2(-) and are electrically connected together, therefore they have to be controlled by volt free contacts or bridge.
 Connected devices/indicators must provide a sufficient separation depending on the mains voltage on L1(+) L2(-).

Attention!

- Before checking insulation and voltage, disconnect the insulation monitor AN 5892 from the power source!
- In one voltage system only one insulation monitor can be used. This has
 to be observed when interconnecting two separate systems.
- · The device must not be operated without PE connection!
- On fluctuation of the mains voltage momentary false readings can occur.
 This is normal and caused by the cyclic measuring principle.

Attention!

- The unit can be connected to the DC side as well as on the AC side of the voltage system and monitors the Insulation on AC and DC side with the same sensitivity. The response value is fixed. An external Indicator Instrument can be connected.
- If a monitored AC system includes galvanically connected DC circuits (e.g. via a rectifier), an insulation failure on the DC side can only be detected correctly, when a current of min 10 mA can flow via the semiconductor connections.
- If a monitored DC system includes galvanically connected AC circuits (e.g. via an inverter), an insulation failure on the AC side can only be detected correctly, when a current of min 10 mA can flow via the semiconductor connections.
- $\bullet\,$ The response value ${\rm R_{AN}}$ is fixed. An external indicator instrument can be connected.
- The unit works de-energized on trip, that means, the output relay relase in position of rest at a insulation failures (R_E < R_{AN}).
- A bridge between X5 and LT1 allows to select auto or manual reset.
 The AN 5892 has a built in reset button on the front and allows connection
 of an external button at terminals LT1 and LT2 also. To provide a function
 test an external test button can be connected via a testing resistor.
- For function test an external or built in push button PT can be used to simulate a ground fault. The push button has to be pressed for the length of a measuring period.
- The analogue output L1(+) L2(-) provides a voltage signal proportional to the actual insulation resistance of the mains. The following formula describes the input to output ratio.

(0V at $R_F = 0$ and 13,0 13,5 V at $R_F = \infty$)

$$U_{A} = \frac{U_{max}}{\frac{180 \text{ k}\Omega}{R_{F}} + 1}$$
; $U_{max} = 13,25 \text{ V} \pm 0,25 \text{ V}$

These values for $\rm U_A$ are valid for $\rm C_E$ = 0 (see characteristic). In practice it makes no sense to monitor values above 11 ... 12V as the tolerances increase, especially with mains capacity. On fluctuation of the mains voltage momentary false readings can occur. This is normal and caused by the cyclic measuring principle.

2 11.01.21 en / 335A

Technical Data Technical Data Auxiliary circuit EMC IEC/EN 61000-4-2 Electrostatic discharge: 8 kV (air) AC 230 V HF irradiation Auxiliary voltage U₁₁: 80 MHz ... 1 GHz: Voltage range: 0.8 ... 1.2 U_N 20 V / m IEC/EN 61000-4-3 Frequency range: 40 ... 400 Hz 1 GHz ... 2.7 GHz: 10 V/mIEC/EN 61000-4-3 Nominal consumption: IEC/EN 61000-4-4 Approx. 4 VA Fast transients: 2 kV Surge voltages **Measuring Circuit** Between A1 - A2 and L1(+) - L2(-): IEC/EN 61000-4-5 1kV Nominal voltage U_N: $DC \le 1500 \text{ V} / AC \le 1000 \text{ V}$ Between A1, A2 - PE und L1(+), L2(-) - PE: 2 kV Voltage range: 0 ... 1.15 U_N IEC/EN 61000-4-5 Frequenzy range: 40 ... 60 Hz HF-wire guided: 10 V IEC / EN 61000-4-6 Response value R_{AN}: Interference suppression: 50 k Ω , 10 ... 440 k Ω on request Limit value class B EN 55011 Setting R_{AN}: Internal AC resistance: Fixed Degree of protection IP 40 $> 120 \text{ k}\Omega$ Housing: IEC/EN 60529 Internal DC resistance: > 150 k Ω Terminals: IP 20 IEC/EN 60529 Measuring voltage: Approx. +/- 13 V Housing: Thermoplastic with V0 behaviour Max. measuring current according to UL subject 94 (RE = 0): < 0.3 mA Vibration resistance: Amplitude 0,35 mm IEC/EN 60068-2-6 Max. permissible noise frequency 10 ... 55 Hz DC voltage: 20 / 060 / 04 IEC/EN 60068-1 DC 1700 V Climate resistance: Terminal designation: EN 50005 Measuring cycle internally Wire connection adjustable: 2 ... 16 s Line capacitance CE Cross section: 2 x 2,5 mm² solid or to ground: 2 x 1.5 mm² stranded wire with sleeve $1 \dots 20 \mu F$ Factory setting: 2 s (for CE = 1 μ F) DIN 46228-1/-2/-3/-4 Operate delay 10 mm Stripping length: At $R_{AN} = 50 \text{ k}\Omega$, $CE = 1 \mu\text{F}$ Wire fixing: Flat terminals with self-lifting $R_{\rm E}$ from ∞ to 0,9 $R_{\rm AN}$: clamping piece < 15 sIEC/EN 60999-1 $R_{\rm F}$ from ∞ to 0 k Ω : < 10 s 0.8 Nm Fixing torque: Hysteresis Mounting: DIN rail IEC/EN 60715 At $R_{AN} = 50 \text{ k}\Omega$: Approx. 580 g Approx. 5 % Weight: Nominal consumption: Approx. 4 VA

IEC/EN 61557-8

Output

Contacts

AN 5890.11: 1 changeover contact

Max. switching voltage: AC 250 V Thermal current I,: 8 A

Switching capacity

Response inaccuracy:

Phase failure bridging:

To AC 15

NO contact: 3 A / AC 230 V IEC/EN 60947-5-1 NC contact: 1 A / AC 230 V IEC/EN 60947-5-1 Short circuit strength

 \pm 15% \pm 1.5 k Ω

> 40 ms

max. fuse rating:

6 A gG/gL IEC/EN 60947-5-1 Mechanical life:

30 x 106 switching cycles

Analogue output

For actual insulating value, no galvanic separation

Terminals X3-X4: Typ. 0 ... 13.25 V / R_i approx. 50 Ω

 $(0 \text{ V at R}_{\scriptscriptstyle F} = 0 \text{ and } 13.0 \dots 13.5 \text{ V}$

at $R_{E} = \infty$

X4 is internal connected with PE

General Data

Continuous operation Operating mode:

Temperature range

- 20 ... + 60 °C Operation: Storage: - 25 ... + 70 °C Altitude: < 2000 m

Clearance and creepage

distances

Overvoltage category / pollution degree:

Measuring circuit to aux. voltage

and relay contact: 6 kV / 2 IFC 60664-1

Auxiliary voltage

to relay contact: 6 kV / 2 IEC 60664-1

Insulation test voltage

Routine test: AC 4 kV; 1 s Width x height x depth: 100 x 78 x 115 mm

Standard Type

Dimensions

AN 5892.11/102 AC230 V 50 kΩ

Article number: 0040520

Output: 1 changeover contact AC 230 V

Auxiliary voltage U_H: Response value R_{AN}: $50 \text{ k}\Omega$ Line capacitance: 1 μF De-energiesed on trip

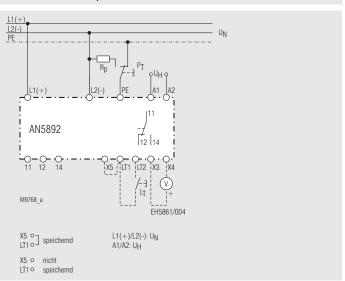
Width: 100 mm

3 11.01.21 en / 335A

Accessories

AG 5876.11/031: EH 5861/004: Pre-warning device Indicating instrument, degree of protection: IP 52 Article number: 0030618

96 x 96 x 52 mm

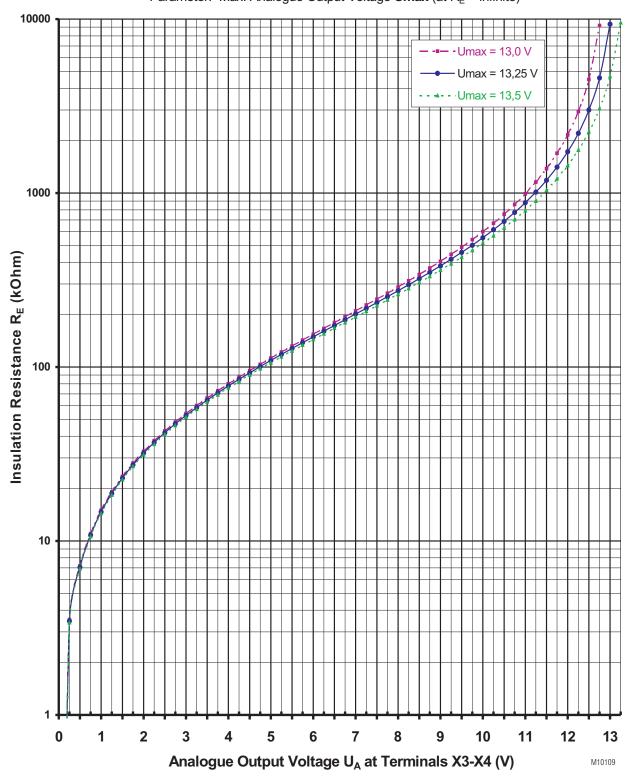


The indicating device EH 5861 is externally connected to the insulation monitor and shows the actual insulation resistance of the voltage system to ground.

Dimensions:

Width x heigth x depth

Connection Example



4 11.01.21 en / 335A

Analogue Output Voltage U_A (Terminals X3-X4)

against Insulation Resistance R_E with $C_E = 0$

Parameter: Max. Analogue Output Voltage **Umax** (at R_E = infinite)

11.01.21 en / 335A

E. Dold & Söhne GmbH & Co. KG • D-78120 Furtwangen • Bregstraße 18 • Phone +49 7723 654-0 • Fax +49 7723 654356	